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The big years of wide-area network spreading worms were 2003 and 2004, the years of Blaster [1] and Sasser 
[2].  About four years later,  in late 2008, we witnessed a similar worm that exploits the MS08-067 server 
service vulnerability in Windows [3]:  Conficker. Like its forerunners, Conficker exploits a stack corruption 
vulnerability to introduce and execute shellcode on affected Windows systems, download a copy of itself, 
infect the host and continue spreading. SRI has published an excellent and detailed analysis of the malware 
[4]. The scope of this paper is different: we propose ideas on how to identify, mitigate and remove Conficker 
bots.

This paper contains information about detecting and removing Conficker – either remotely, by the way it 
patches the Windows server service vulnerability by which is spreads, or by identifying the malware locally 
and wiping it from memory and hard drive. In addition to just describing how this can be achieved, we have 
also developed software for all the mitigation methods described in this paper. All these tools are licensed 
under  the  GPL and therefore  released including source.  Downloads  are  available  from  http://iv.cs.uni-
bonn.de/conficker [9].

This paper is structured as follows: The rest of section 1 gives a very brief introduction about how Conficker 
infects a  system and how it's  exploits  for the Windows MS08-067 vulnerability  are designed to operate. 
Section  2  explains  the  way  Conficker  dynamically  patches  the  Windows  server  service  vulnerability 
following successful infection. Section 3 explains how the decentralized update procedure of Conficker.B 
works,  how the  signatures  in  Conficker.A,  .B,  and .C are  verified  and why it  is  difficult  to  attack  this 
procedure.  Section 4 describes the hooking mechanism Conficker uses to prevent infections using this attack 
vector. Section 5 explains how the investigation helped to create a network scanner for infected machines. 
Besides actively scanning for infected machines, infections can be enumerated passively. The generation and 
usage of specific IDS patterns from Conficker's shellcode to detect infections is presented in section 6. Section 
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The Conficker worm has infected several million computers since it first started spreading in 
late 2008 but attempts to mitigate Conficker have not yet proved very successful. In this paper 
we present several potential methods to repel Conficker. The approaches presented take 
advantage of the way Conficker patches infected systems, which can be used to remotely 
detect a compromised system. Furthermore, we demonstrate various methods to detect and 
remove Conficker locally and a potential vaccination tool is presented. Finally, the domain 
name generation mechanism for all three Conficker variants is discussed in detail and an 
overview of the potential for upcoming domain collisions in version .C is provided. Tools for 
all the ideas presented here are freely available for download from [9], including source code.

http://iv.cs.uni-bonn.de/conficker
http://honeynet.org/
http://iv.cs.uni-bonn.de/conficker


7 describes the domain name generation mechanism that Conficker-infected hosts are using to check for 
updates on a regular basis and discusses a potential solution to the aforementioned problem based on this 
knowledge.  Further,  it  illustrates related issues in the pseudo random number generator based on a re-
implementation in C. In section 8 we provide some details about the mechanisms Conficker implements to 
complicate  enumeration.  Conficker  variants  .B  and  .C  contain  blacklists  of  some  IP  addresses  used  by 
various antivirus and security companies and prevents connections to these networks. We provide some 
details about the network ranges contained in those blacklists and discuss how these blacklists were created. 
On infected systems it is important to disable Conficker as quickly as possible, to prevent any attempted 
countermeasures against disinfection tools.  Section 9 explains our disinfection tool and demonstrates the 
method it uses to terminate and wipe Conficker from memory on infected hosts, while keeping the infected 
system's  services  running.  Various  organizations  have  reported  re-infection  after  rebooting  cleansed 
Conficker systems, so we have created a vaccination tool that prevents infection by Conficker variants .A, .B, 
and .C. In Section 10 we explain in detail how mutexes are used in Conficker and how we exploit the use of 
mutexes to create our Nonficker Vaxination tool. Besides attacking Conficker in memory and using mutexes 
for vaccination, it is also possible to remove the binary file Conficker installs. Although there have been 
reports that Conficker files have random names, this is not completely accurate. In section 11 we explain the 
name generation mechanism and installation path of the Conficker.B and .C DLLs. As the name generation 
mechanism is deterministic, this information can be used to find and remove the malicious files. In section 
12,  we  show  the  impact  of  Conficker.C's  modified  domain  name  generation  mechanism  and  provide 
information about the potential for collisions with existing domain names that Conficker.C will attempt to 
contact in April 2009. In section 13, we attempt to derive information about the designers and developers of 
Conficker, based on our findings and observations to date. We conclude our work in section 14.

The original paper included a detailed explanation about issues in Conficker, which allow exploitation. The 
Conficker Working Group (CWG) has requested to not include this section in this public version for various 
reasons. The full paper will be published in the near future.

The tools discussed in all of this paper are all licensed under the GPL and everything presented here is freely 
available for download from [9], including the source code.
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Conficker is delivered as a Dynamic Link Library (DLL), so it cannot run as a standalone program and must 
be loaded by another application. A vulnerable Windows system is generally infected with the Conficker 
worm via the MS08-067 vulnerability, using exploit shellcode that injects the DLL into the running Windows 
server  service.  Other  possible  infection  vectors  are  accessing  network  shares  or  USB  drives  where  the 
malicious DLL is started via the  rundll32.exe application. Once infected, Conficker installs itself as a 
Windows service to survive reboots. It then computes domain names using a time-seeded random domain 
name generator and attempts to resolve these addresses. Each resolved address is contacted and a HTTP 
download is attempted. No successful HTTP download was witnessed until the middle of March 2009, at 
which  point  security  experts  observed  nodes  that  downloaded  encrypted  binaries  from  some  of  the 
randomly generated domains.

Thinking about ways to attack  Conficker's  infrastructure,  this  DNS based update  feature  is  obviously  a 
potential target. However, Conficker uses RSA signatures to validate the downloads and rejects them if the 
check fails, and attacking RSA is not feasible.
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The Windows server  service  vulnerability  allows Conficker  to  act  as  autonomously spreading malware, 
which is probably the main reason for it's success. This section describes how the vulnerable function is 
exploited to execute commands on the victim host.  The exploit  vector is  a  remote procedure call  to the 
Windows API function  NetpwPathCanonicalize(),  exported by  netapi32.dll  over an established 
server message block (SMB) session on TCP port 445. This function takes a single argument, a path string, 
and canonicalizes it, e.g., aaa\bbb\..\ccc becomes aaa\ccc. However, the routine that shrinks the string 
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contains a security bug: by invoking a specially crafted path string, it is possible to move beyond the start of a 
stack buffer  and control  the value of  a  function's  return address  (note that  this  is  not a  classical  buffer 
overflow where you write beyond the buffer's end). With this knowledge standard exploitation actions can 
be performed. Alexander Sotirov has decompiled the relevant function and published some C code with 
comments that greatly explain the problem [5].

Figure 1: Conficker's shellcode and it's structure  in a path string

Conficker uses some standard PEB shellcode to load libraries and resolve function names. It is encoded using 
a one byte XOR key to prevent 0-bytes, which would be interpreted as string terminators. As displayed in 
figure 1, the first few shellcode instructions form a decryptor stub that, upon execution, reconstructs the 
original shellcode in memory. The shellcode itself loads urlmon.dll and locates URLDownloadToFile() 
in it, which is a function designed to download a file from a webserver and store it on the local hard drive. 
Both the DLL and function name are appended to the shellcode instructions and also covered by the XOR 
encoding. The last two encoded MS bytes are used as a stop pattern to the decryptor.

Figure 2 shows a shellcode example that was caught in a honeypot in its encoded and decoded form. As the 
XOR key is always 0xC4, collecting Conficker samples is fairly straight forward: it is sufficient to XOR the 
whole exploit string (even with the SMB protocol information), extract the URL and download the file. These 
steps are easy to automate on a honeypot itself. Nevertheless, there are some additional factors to consider. 
We observed that  downloading samples  using  wget or  similar  command line  tools  would not  work for 
variants later than Conficker.A, even when using a spoofed user agent string. This is because the server 
would not submit the binary but instead returns a stream of lowercase characters. We haven't looked into the 
corresponding code parts yet,  but  there appears to be some kind of browser identification functionality 
within Conficker that goes beyond simple user agent string comparison. The solution is to behave exactly 
like an exploited system, so we wrote our own small downloader that uses URLDownloadTofile(), cross-
compiled it on Linux and ran it in wine to retrieve the samples.

e8 ff ff ff ff c2 5f 8d 4f 10 80 31 c4 41 66 81 |......_.O..1.Af.| 2c 3b 3b 3b 3b 06 9b 49 8b d4 44 f5 00 85 a2 45 |,;;;;..I..D....E|
39 4d 53 75 f5 38 ae c6 9d a0 4f 85 ea 4f 84 c8 |9MSu.8....O..O..| fd 89 97 b1 31 fc 6a 02 59 64 8b 41 2e 8b 40 0c |....1.j.Yd.A..@.|
4f 84 d8 4f c4 4f 9c cc 49 73 65 c4 c4 c4 2c ed |O..O.O..Ise...,.| 8b 40 1c 8b 00 8b 58 08 8d b7 a1 00 00 00 e8 29 |.@....X........)|
c4 c4 c4 94 26 3c 4f 38 92 3b d3 57 47 02 c3 2c |....&<O8.;.WG..,| 00 00 00 50 e2 f8 8b fc 56 ff 17 93 83 c6 07 e8 |...P....V.......|
dc c4 c4 c4 f7 16 96 96 4f 08 a2 03 c5 bc ea 95 |........O.......| 18 00 00 00 33 d2 52 52 8b cc 66 c7 01 78 2e 51 |....3.RR..f..x.Q|
3b b3 c0 96 96 95 92 96 3b f3 3b 24 69 95 92 51 |;.......;.;$i..Q| ff 77 04 52 52 51 56 52 ff 37 ff e0 ad 51 56 95 |.w.RRQVR.7...QV.|
4f 8f f8 4f 88 cf bc c7 0f f7 32 49 d0 77 c7 95 |O..O......2I.w..| 8b 4b 3c 8b 4c 0b 78 03 cb 33 f6 8d 14 b3 03 51 |.K<.L.x..3.....Q|
e4 4f d6 c7 17 cb c4 04 cb 7b 04 05 04 c3 f6 c6 |.O.......{......| 20 8b 12 03 d3 0f 00 c0 0f bf c0 c1 c0 07 32 02 | .............2.|
86 44 fe c4 b1 31 ff 01 b0 c2 82 ff b5 dc b6 1f |.D...1..........| 42 80 3a 00 75 f5 3b c5 74 06 46 3b 71 18 72 db |B.:.u.;.t.F;q.r.|
4f 95 e0 c7 17 cb 73 d0 b6 4f 85 d8 c7 07 4f c0 |O.....s..O....O.| 8b 51 24 03 d3 0f b7 14 72 8b 41 1c 03 c3 8b 04 |.Q$.....r.A.....|
54 c7 07 9a 9d 07 a4 66 4e b2 e2 44 68 0c b1 b6 |T......fN..Dh...| 90 03 c3 5e 59 c3 60 a2 8a 76 26 80 ac c8 75 72 |...^Y.`..v&...ur|
a8 a9 ab aa c4 5d e7 99 1d ac b0 b0 b4 fe eb eb |.....]..........| 6c 6d 6f 6e 00 99 23 5d d9 68 74 74 70 3a 2f 2f |lmon..#].http://|
fd f5 ea f5 ea f6 f0 f7 ea f6 f4 f0 fe fc f4 eb |................| 39 31 2e 31 2e 32 34 33 2e 32 30 34 3a 38 30 2f |91.1.243.204:80/|
a9 a5 b1 a8 c4 4d 53                            |.....MS|          6d 61 75 6c 00 89 97                            |maul...|

Figure 2: Encoded and decoded shellcode sample

One interesting aspect is a slight change in the shellcode that was observed in recorded exploits.  It was 
probably introduced by Conficker version .B (see the next section for a discussion on versions and names): 
One of the first decoded assembly instructions is the SLDT instruction (Store Local Descriptor Table) which is 
widely used in malware for virtual machine detection. Because the result is not used, we assume that the 
only purpose of this additional instruction is  to evade analysis.  When this was first  observed, the  SLDT 
instruction was not implemented in the  libemu-based  sctest utility [16],  and analyzing the shellcode with 
libemu was therefore not possible. However, adding the  SLDT instruction to  libemu  was fairly easy, which 
means that this evasion mechanism no longer evades sctest. The SRI technical report contains an example of 
sctest's  output  for  Conficker's  shellcode [4]  that  was generated after  the  SLDT instruction was added to 
libemu.
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The different sample naming schemes used by different antivirus companies often leads to malware naming 
confusion. For Conficker, the most prominent naming scheme is appending a letter so that .A indicates the 
first version, .B the second and so on. In this paper, we distinguish between different Conficker versions 
based on the mutexes they create. Each Conficker version installs a couple of named mutexes during startup, 
to make sure that older version of the code are not run. This is achieved by registering all previous mutex 
names plus an additional mutex with a different name in each version. If mutex creation fails, this indicates 
that another Conficker version is already running which is  at  least as recent as the one currently being 
executed. We observed three different mutex installation routines, corresponding to three Conficker variants 
that we call .A, .B, and .C. Although some researchers refer to versions .D or .B++, our naming convention 
matches  the  most  common  agreement.  However,  while  Conficker  is  definitely  a  sophisticated  piece  of 
malware, there seems to be a flaw in it's  mutex generation mechanism mechanism. We assume that the 
Conficker authors made a mistake that effectively renders the concept of using mutual exclusion useless. We 
will discuss the mutexes in more detail in section 10.1.

!"#&45##NetpwPathCanonicalize()##4((:

It is quite common in modern malware to patch a vulnerability after successful exploitation, to prevent other 
malware from also infecting the compromised system. Conficker attempts the same approach by hooking 
itself into the vulnerable function NetpwPathCanonicalize() and intercepting corresponding incoming 
remote procedure calls. This hook replaces the first couple of bytes of the function's instructions with a JMP 
instruction to redirect execution to Conficker's own code . The purpose of the hook will be explained later. 
The following figure compares the first instructions of the original function to the hooked one (taken from an 
English Windows XP SP2 without any updates installed and infected with Conficker.C):

5B86A259   8BFF          MOV EDI,EDI                       5B86A259 E9 A0B028A6   JMP 01AF52FE
5B86A25B   55            PUSH EBP
5B86A25C   8BEC          MOV EBP,ESP
5B86A25E   53            PUSH EBX                          5B86A25E 53            PUSH EBX
5B86A25F   8B5D 14       MOV EBX,DWORD PTR SS:[EBP+14]     5B86A25F 8B5D 14       MOV EBX,DWORD PTR SS:[EBP+14]
5B86A262   56            PUSH ESI                          5B86A262 56            PUSH ESI
5B86A263   57            PUSH EDI                          5B86A263 57            PUSH EDI
5B86A264   33FF          XOR EDI,EDI                       5B86A264 33FF          XOR EDI,EDI
5B86A266   3BDF          CMP EBX,EDI                       5B86A266 3BDF          CMP EBX,EDI
5B86A268   0F85 8EDE0000 JNZ NETAPI32.5B8780FC             5B86A268 0F85 8EDE0000 JNZ NETAPI32.5B8780FC

Figure 3: Unpatched and patched version of NetpwPathCanonicalize()

As we can see, the JMP instruction takes 5 bytes (1 byte for the opcode plus a 4 bytes address), so only the 
first  5 bytes of the original  function are modified. Conficker needs to know where the next unmodified 
instruction starts in order to save all (partially) overwritten instructions in a different location, otherwise 
execution could land in the middle of an instruction and cause errors. It has to ensure that all overwritten 
instructions are completely copied and that execution is resumed at the next unmodified original instruction. 
This is achieved by parsing the instructions with  mlde32, a  Micro Length-Disassembler Engine 32 [6], that is 
included in the code. This disassembler is called in a loop, and the length values are added up until the 
identified instructions provide enough room for the patch (e.g., the  JMP as in figure 3). In fact, the hook 
installer routine is implemented generically to work with arbitrary target functions and hooking instructions.

Conficker.C hooks a couple of other functions in different DLLs using the same method. Table 1 contains a 
list that we extracted from one of the samples. Which of these functions are hooked depends on the way the 
library  was  loaded.  For  instance,  if  the  DLL  was  injected  into  svchost.exe by  the  server  service 
vulnerability shellcode, it only hooks NetpwPathCanonicalize(). If an infected system is rebooted, the 
svchost process that provides a DNS caching service to other applications is also hooked too. The purpose of 
these hooks is to filter out name resolution attempts for a list of antivirus and security vendor sites whose 
names are embedded in the malware. You can easily verify this effect by attempting to load a web page for 
one such domain in a web browser. If the name resolution fails in the browser but a command line nslookup 
works for the target domain, the Conficker hook is probably active. For now, a more detailed analysis of the 
hooking routines is beyond the scope of this paper, but may be added in later versions.
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DLL Function
dnsapi.dll DnsQuery_A

DnsQuery_UTF8

DnsQuery_W

Query_Main

netapi32.dll NetpwPathCanonicalize

ntdll.dll NtQueryInformationProcess

wininet.dll InetnetGetConnectedState

ws2_32.dll sendto

Table 1: Functions hooked by Conficker.C
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Conficker.B  contains  a  routine  to  update  itself  by  scanning  incoming  exploitation  attempts  from  other 
infected machines and downloading the new malware binaries from the attacker. If the \..\ pattern was 
found in the path argument to a NetpwPathCanonicalize() request, it is not only blocked. Instead, the 
path is compared against the shellcode template to check whether the request belongs to an exploit sent by 
another Conficker infected computer. This is possible because of the static shellcode design. Figure 4 shows 
the decryption loop, a simple bytewise XOR with the constant key 0xC4 (the first box). After that, the routine 
tries to locate an occurrence of the substring http://, which, in case of a valid exploit, would point to a 
sample download URL. If found, the download is performed and the running Conficker code is updated on 
the fly to the newer version. 

Figure 4: Shellcode decryptor and URL finder
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Hooking into this update procedure requires identification of infected computers. There are several ways to 
do this, the most promising approach being based on DNS sinkholing, which will be discussed further in 
section 7. Another possible approach involves using honeypots to catch Conficker exploitation attempts, 
which are a strong indication that the attacking machine is itself infected. One could then send a specially 
crafted exploit to this machine that would trigger the download and execution of a cleaning DLL. An 
alternative approach is the development of a network based scanner, which we detail in the next section.

However, the Conficker authors have taken preventive measures against such an approach: a downloaded 
file has to carry a signature (an RSA encrypted hash) that is checked against a public RSA key. If no valid 
signature is found, the downloaded file is discarded. Conficker.A uses SHA1 to hash binaries and a 1024 bit 
RSA key. Later Conficker variants use 4096 bit RSA and a different hashing scheme which we so far haven't 
had time to look at in detail. This signature check is performed whenever Conficker downloads an update, 
no matter if it was received from a central location or another machine. Using RSA with sufficiently long 
keys to authenticate files makes it basically infeasible to inject other files into the update process, so we did 
not concentrate on attacking Conficker in this way any further. However, it might be noteworthy that we 
haven't seen the ability to parse incoming shellcodes in Conficker.A and .C variants, which means that, to 
date, the only updates possible are from version .B to .C. We were able to match the signature algorithm in 
Conficker.A to OpenSSL's SHA1 implementation [7]. The types, number of arguments and library calls as 
well as dependencies match the file hashing functions exactly to the  SHA_Init(),  SHA_Update(),  and 
SHA_Finalize() functions  of  the  OpenSSL  library.  Figure  5  shows  the  init  function.  Looking  at  the 
constant values proves it as being SHA1.

Figure 5: SHA1_INIT function in Conficker.A

In case of a Conficker.A update, the SHA1 hash of the binary is padded by prepending 60 "0xFF" bytes. The 
overall 80 bytes are encrypted using the private key and appended to the original binary. The clients verify 
this signature by decrypting the hash and comparing it to their own SHA1 sum of the binary. The binary is 
kept in memory until the verification was successful. Attacking this update procedure requires us to either 
break the RSA key or to create a SHA1 collision with an existing update. Even though keys with 1039 bits 
have been factorized at the University of Bonn [8], this cannot be performed within acceptable timescales, 
and Conficker.B and .C use much longer RSA keys. Neither is it feasible to attack using SHA1 collisions, 
because no one has observed a Conficker.A update including a hash to date (the observed downloads were 
from .B domains). Even if a hash for a valid update was available, a SHA1 second preimage attack (the task 
to compute a second input for a given hash) where the hashed data is a valid executable is still virtually 
impossible.  We think that the way updates are signed and verified is too hard to attack, if not impossible. So 
we focused on the alternative methods we cover in the following sections.
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It is of general belief that Conficker patches compromised systems after infection to prevent future attacks 
against the Windows server service bug from being successful. However, we analyzed the relevant Conficker 
code elements and found that this to be not necessarily correct.  Conficker does not patch the MS08-067 
vulnerability. Instead, calls to  NetpwPathCanonicalize() are analyzed by the aforementioned hooking 
routine to check whether they contain indications for exploits. By taking a look at the basic block graph in 
figure 6 it is easy to see what this function does: The first block just checks whether a string was passed and 
returns immediately in case of a NULL pointer. Otherwise, it moves on into the second block, where the path 
is scanned for the pattern  \..\ by calling the  wcsstr() function. If the pattern was not found, execution 
follows the red arrow to a box that performs a length check: If  the path string is longer than 200 wide 
characters, the program branches to the left block, resulting in a return value of 0. Otherwise, 1 is returned. 
To sum up, this function checks whether the requested path contains the unicode sequence  \..\ or if it is 
longer than 200 wchars. Depending on the return value, the calling function would skip or call the original 
NetpwPathCanonicalize() function.  Conficker.C  extends  this  approach  slightly:  in  case  of  a  reject, 
SetLastError() is called to simulate the processing of an invalid argument, indicated by error code 87 
(ERROR_INVALID_PARAMETER).

Figure 6: The filter blocking paths longer than 200 wchars or containing the pattern \..\
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As explained in section 4, Conficker installs a handler that checks for suspicious paths before passing it to 
the  possibly  vulnerable  NetpwPathCanonicalize() function.  All  of  the  three  considered  Conficker 
variants return the error code for "invalid parameters" (87) in case they either find a \..\ in the path or if the 
path is longer than 200 wide characters. This legitimate error code is returned to the calling RPC program. 
The constant return code from Conficker can be exploited to remotely identify infected machines. We have 
developed a tool that allows system administrators to quickly and easily scan their networks for infected 
hosts. The tool can be downloaded from [9].

The use of \..\ sequences in RPC calls to  NetpwPathCanonicalize() is legitimate and is evaluated by 
canonicalizing the path in uninfected systems. In case of valid path names, a successful canocalization is 
signalled by setting the error code to  WERR_OK (0).  Besides,  specific  errors can be triggered by creating 
specially crafted paths. In case such a path name contains \..\ sequences or is longer than 200 wide chars, 
the error code is set to the constant 87 by the handler and not by NetpwPathCanonicalize() itself. As 
this results in different  return values for  both valid and specifically  crafted paths,  it  can be used as an 
indication whether a host is infected or not.

Conficker installs this handler on all systems even if the MS08-067 vulnerability has been patched by the user 
or administrator. Thus, it is possible to identify all machines infected by Conficker and not only unpatched 
ones. The latters are usually machines that have been infected by other vectors, like USB-sticks or network 
shares.

I"#$%&'*>$(%#)5&5+&$(%

There are several ways to detect Conficker's attemtps to abuse the server service vulnerability in the network 
stream. Because of the nature of the exploit we chose to create signatures for matching against the shellcode 
pattern rather  than against the vulnerability trigger (a path containing a \..\..\  unicode sequence),  for 
which signatures are already publicly available. As mentioned before, Conficker uses a static shellcode with 
a fixed XOR key to make sure other versions can successfully decode and parse it. This has the advantage 
that the static string is well suited as a signature. We collected several exploit traces and processed them with 
nebula [17], an automated intrusion signature generator, to create  rules for use in the snort intrusion detection 
system [18]. Based on the signatures produced, the following rules were created:

alert tcp any any -> $HOME_NET 445 (msg: "conficker.a shellcode"; content: "|e8 ff ff ff ff c1|^|8d|
N|10 80|1|c4|Af|81|9EPu|f5 ae c6 9d a0|O|85 ea|O|84 c8|O|84 d8|O|c4|O|9c cc|IrX|c4 c4 c4|,|ed c4 c4 
c4 94|&<O8|92|\;|d3|WG|02 c3|,|dc c4 c4 c4 f7 16 96 96|O|08 a2 03 c5 bc ea 95|\;|b3 c0 96 96 95 92 
96|\;|f3|\;|24|i| 95 92|QO|8f f8|O|88 cf bc c7 0f f7|2I|d0|w|c7 95 e4|O|d6 c7 17 f7 04 05 04 c3 f6 
c6 86|D|fe c4 b1|1|ff 01 b0 c2 82 ff b5 dc b6 1b|O|95 e0 c7 17 cb|s|d0 b6|O|85 d8 c7 07|O|c0|T|c7 07 
9a 9d 07 a4|fN|b2 e2|Dh|0c b1 b6 a8 a9 ab aa c4|]|e7 99 1d ac b0 b0 b4 fe eb eb|"; sid: 2000001; 
rev: 1;) 

alert tcp any any -> $HOME_NET 445 (msg: "conficker.b shellcode"; content: "|e8 ff ff ff ff c2|_|8d|
O|10 80|1|c4|Af|81|9MSu|f5|8|ae c6 9d a0|O|85 ea|O|84 c8|O|84 d8|O|c4|O|9c cc|Ise|c4 c4 c4|,|ed c4 
c4 c4 94|&<O8|92|\;|d3|WG|02 c3|,|dc c4 c4 c4 f7 16 96 96|O|08 a2 03 c5 bc ea 95|\;|b3 c0 96 96 95 
92 96|\;|f3|\;|24 |i|95 92|QO|8f f8|O|88 cf bc c7 0f f7|2I|d0|w|c7 95 e4|O|d6 c7 17 cb c4 04 cb|{|04 
05 04 c3 f6 c6 86|D|fe c4 b1|1|ff 01 b0 c2 82 ff b5 dc b6 1f|O|95 e0 c7 17 cb|s|d0 b6|O|85 d8 c7 07|
O|c0|T|c7 07 9a 9d 07 a4|fN|b2 e2|Dh|0c b1 b6 a8 a9 ab aa c4|]|e7 99 1d ac b0 b0 b4 fe eb eb|"; sid: 
2000002; rev: 1;) 

The first of the above rules covers the full static part of Conficker.A's shellcode. (c.f. figure 2). It starts with a 
CALL instruction which is part of the decryptor stub's GetPC sequence and ends with ac b0 b0 b4 fe eb 
eb, which decodes to http://. The next part would be an IP address that could vary and is therefore not 
covered anymore. The second rule matches the shellcode of exploits sent by Conficker.B. It is easy to see that 
there are only few differences which are mainly related to the additional SLDT instruction. It is quite obvious 
that both rules can be generalized into one that matches all Conficker versions but then the information 
about the attacking version would not be present anymore. Below is a real world example of a rule match for 
Conficker.B:
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[**] [1:2000002:1] conficker.b shellcode [**] 
[Priority: 0] 
03/29-23:43:22.095678 88.29.81.25:2238 -> 127.0.208.64:445 
TCP TTL:114 TOS:0x0 ID:11608 IpLen:20 DgmLen:832 DF 
***AP*** Seq: 0x594AF9FF  Ack: 0x4657E1BC  Win: 0x4136  TcpLen: 20 

As both  signatures  consist  of  contiguous  byte  sequences,  pattern  matching  is  straightforward and  it  is 
questionable  whether  a  complex  IDS  like  snort  is  really  necessary  to  detect  them.  We  have  used  the 
lightweight ngrep as a minimal Conficker IDS and found it to be well suited. Here is how the tool should be 
started for detecting the version .B shellcode pattern:

$ sudo ngrep -qd eth0 -W single -s 900 -X 
0xe8ffffffffc25f8d4f108031c4416681394d5375f538aec69da04f85ea4f84c84f84d84fc44f9ccc497365c4c4c42cedc4
c4c494263c4f38923bd3574702c32cdcc4c4c4f71696964f08a203c5bcea953bb3c096969592963bf33b24699592514f8ff8
4f88cfbcc70ff73249d077c795e44fd6c717cbc404cb7b040504c3f6c68644fec4b131ff01b0c282ffb5dcb61f4f95e0c717
cb73d0b64f85d8c7074fc054c7079a9d07a4664eb2e244680cb1b6a8a9abaac45de7991dacb0b0b4feebeb 'tcp port 445 
and dst net 127.0.208.0/24' 

As far as we observed the shellcode can always be found within the first 832 bytes of the packet payload. 
ngrep is started with the option to investigate the first 900 bytes to be on the safe side but to skip the rest for 
performance reasons. It then spits out a line as  displayed below for each match. A matching for Conficker.A 
shellcodes can be performed accordingly.

T 85.178.36.87:4120 -> 127.0.208.89:445 [AP] .....SMB%.....................l.......................
...T...T...&..@...\.P.I.P.E.\.............................................H.H.D.H.H...1.......1...\.
EvhpfttbTUyghlxpIyPnXXBvxXkIOONuVUyJXtrZdGHBsFqgPPcwUYwgzFzeSxPGWvLnLqQfKFskaxfYnrsdUunjctDgxwIeYhvc
......_.O..1.Af.9MSu.8....O..O..O..O.O..Ise...,.....&<O8.;.WG..,........O.......;.......;.;i..QO..O.
.....2I.w...O..............D...1..........O.....s..O....O.T......fN..Dh........]....................
.................MskbeUNUPFXJIBBWGrpRzQeGZcUQvgpaZrKtXBQxPUAMHXxRnQgKHBeltTSYFuPVpDFukGRpBrJqqbOiAtp
YlwxPLYeYeswLJPVPTVSKWglaqyPyoPqjPABgqyTfsoublEqNMnYCPoNPkKSmnJFLcfIAVBUdjhnjUaWQiNZYVATfMxVAtUbIA\.
....\.....\.A.C.B.I.N.Z.K........oCDXX'..oLENAWZGFONDZUZYQDVRDRDLZIMZGEBNGQIHQWBKXXJ.J$....7.bESCXGK

MDMZ....................\...........  

J"#)(DC$%#%CD5#E5%5'C&$(%

Conficker generates a series of domain names from which it tries to download updates. Conficker.A and .B 
create 250 domains per day. This puts high load on the contacted domains and can easily lead to a denial of 
service against them. Various organizations have made efforts to attempt to pre-register these 2 x 250 daily 
domains in order to hinder Conficker from retrieving updates and to track infected hosts. Conficker.C tries to 
evade  this  defensive  approach  by  creating  50.000  domains  per  day,  making  pre-registration  logistically 
challenging. Conficker.C randomly chooses 500 out of these domains, which are then contacted for updates. 
The random selection of these 500 is based on Windows' random number generation. A seed is calculated 
based on Windows' performance counter, system time, uptime in milliseconds (tick count), thread id, and 
processor ticks since last boot. This creates a rather unpredictable seed and results in different seeds for 
every running Conficker instance. There is a random Sleep() period of 40 to 50 seconds between every two 
connections  attempts.  This  period  includes  the  time  for  DNS  lookup  and  HTTP  connection.  After  an 
unsuccessful update attempt, Conficker.C sleeps for 24 hours. In the case of a successful update, Conficker 
waits 4 days before continuing to attempt to download new updates. As the next domain to be contacted is 
chosen randomly, the load is equally distributed over many name servers but leads to the problem that there 
is no guaranteed set of domains that is contacted on a given day by every host, significantly increasing the 
effort involved in mitigation at the sinkhole or DNS registrar level.
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Figure 7:  The C variant starts to scan for updates after April 1st, 2009 local time

As  mentioned  earlier,  Conficker.A  and  .B  are  already  using  250  domains  per  day  to  retrieve  updates. 
Conficker.C contains code that will start to look for updates after 1. April 2009 local time, as the code flow in 
figure 7 shows. It is this hardcoded date value within the code that has generated such a high degree of press 
speculation about what the Conficker botnet will or more likely won't happen on April Fools day. Unlike the 
domain generation algorithm, which retrieves a GMT value from remote hosts, this new check is performed 
against the host's clock. Computers that have their clock set to a future time will already try to download 
updates.  While these updates are signed based on RSA (c.f.  section 3) and cannot easily be forged, it  is 
possible to use these domains to identify infected computers. Various organizations have already registered a 
range of those domains and are actively sinkholing requests to facilitate monitoring the number of infections 
and to prevent Conficker's owners from registering them for updates. This registration of Conficker domains 
can also be used to identify infected nodes passively. The generated domain names can also be used by 
network administrators to identify infected machines by monitoring the DNS for suspicious requests. We 
have developed a tool that generates the domain names for Conficker variants .A, .B, and .C, and the tool and 
source code can be freely downloaded from [9].
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Conficker employs HTTP requests for updates, which hide update requests amongst the regular web traffic 
patterns found in most networks. To be even more stealthy, Conficker pre-resolves the domain names and 
uses only plain IP addresses in the HTTP Host header. Thus, the use of application level gateways and host-
based filtering of this traffic is not easily possible.

Figure 8: Domain name generation algorithm

J"!#&45#)(DC$%#%CD5#E5%5'C&$(%#CBE('$&4D

The Domain Name Generation takes place in five steps, which are depicted in figure 8. The algorithm is 
identical for the three considered Conficker variants. The only difference between the three variants are the 
initialization vectors and the constants used in the pseudo random number generator. We have developed a 
tool  that  generates  the  domain names for  all  Conficker  variants.  The tool  and its  source  code is  freely 
available from [9]. 

In a first step, a public web-site is queried in order to get a response that includes the current time based on 
GMT. Conficker.A and .B randomly contact one of the following web-sites:

! baidu.com
! google.com
! yahoo.com
! msn.com
! ask.com
! w3.org

Conficker.C uses three more web-sites in addition to those above:

! facebook.com
! imageshack.us
! rapidshare.com

Selecting such high profile websites as these for time synchronization makes it almost impossible for system 
defenders to simultaneously disable all target time sources in a co-ordinated effort.

The HTTP response returned contains a Date field in the header:

HTTP/1.1 200 OK
Date: Fri, 20 Mar 2009 17:01:13 GMTServer: BWS/1.0
Content-Length: 1809
Content-Type: text/html
Cache-Control: private
Expires: Fri, 20 Mar 2009 17:01:13 GMT
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The day, month, and year are extracted from this time stamp and are used to create a seed for Conficker's 
custom pseudo random number generator (PRNG). This ensures that the PRNGs of all infected hosts are 
started with the same seed. This result is deterministically computed on all infected hosts. The seeding is 
identical for Conficker.A, .B, and .C except for the constants used in its' initialization vectors:

SystemTimeToFileTime(time, filetime);
prng_key = filetime * CON1 / CON2 + CON3;

The GMT date is converted to FileTime, which is "the number of 100-nanosecond intervals since January 1st,  
1601" [10]. Conficker combines the two resulting 32-bit values into one 64-bit value and computes the start 
key of the PRNG as shown above. The three constants differ among the different versions of Conficker (c.f. 
table 2). Thus, all hosts infected with the same variant start the PRNG with the same seed.

Constant Conficker.A Conficker.B Conficker.C

Seeding

CON1 0x463DA5676 0x352C94565 0x2682D10B7

CON2 0x058028E44000 0x058028E44000 0x19254D38000

CON3 0x0B46A7637 0x0A3596526 0x0F1E34A09

PRNG

CON_RAND 0x64236735 0x53125624 0x4F3D859E

CON_DBL 0.737565675 6.26454564e-1 0.946270391

Table 2: Constants used in the PRNGs

All of the following steps shown in figure 8 are based on the fact that the PRNG stays in sync amongst all 
infected hosts. The three steps are repeated until all domain names for the given GMT date are created. First 
a random name length is chosen. Conficker.A and .B can generate domain names with 8 to 11 characters in 
length, which leads to conflicts with existing domains only in very few cases. Conficker.C creates domain 
names of length 4-9, which leads to 150 to 200 conflicting domains per day. We have precomputed those 
conflicts for April 2009. The list can be downloaded from [9], and a short overview about the colliding IP 
addresses and organizations can be found in section 12. After the domain length is chosen, the custom PRNG 
is used to created the lowercase characters for the domain name. After this base name is generated, a random 
top level domain (TLD) is chosen from a hardcoded list. Conficker.A uses the following TLDs:

.com, .net, .org, .info, .biz

Conficker.B employs three more addition to those:

.cc, .cn, .ws

Conficker.C uses 110 TLDs with no overlap to the Conficker.A and .B TLDs except for China ".cn". The large 
amount of TLDs targeted leads to the situation that many different registrars are responsible for those TLDs, 
in  many  countries  around the  world  and attempting  to  block  all  of  these  domains  requires  significant 
international cooperation and coordination. The full list of Conficker.C TLDs can be seen in our "downatool2" 
source  code [9].  For  Conficker.A and .B  250  domains  are  generated per  day.  Conficker.C creates  50.000 
domains per day with the implications explained above.
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Conficker.A Conficker.B Conficker.C

Domains/day 250 250 50.000

Domain name length 8-11 8-11 4-9

TLD suffixes 5 7 110

Table 3: Domain name generation facts

J"2#+*>&(D#,'%E

All Conficker variants use the same pseudo random number generator algorithm. They only differ in two 
constants used. The PRNG is based on floating point operations. Our re-implementation in C is shown in the 
code excerpt in figure 9. In line 10, the global variable holding the current state (prng_key) is converted 
from a 64-bit integer into its floating point representation (d2). In line 11, the original state (as integer) is 
multiplied  by  a  32-bit  constant  (CON_RAND).  Based  on  the  results,  res1 is  computed  using  s_val = 
sin(d2) and a  second constant  (CON_DBL)  as  shown in line  15.  The constants  vary for  all  considered 
versions  of  Conficker.  The  last  mathematical  operation  is  adding  the  logarithm  of  the  floating  point 
representation of the current state.

 1 DWORD64 prng_key;
 2
 3 int RandVal(void)
 4 {
 5 double  res1;
 6 double  d2;
 7 double  s_val;
 8 DWORD64 prod;
 9
10 d2 = prng_key;
11 prod = prng_key * CON_RAND;
12
13 s_val = sin(d2);
14
15 res1 = (( ((prod + s_val) * d2) + CON_DBL ) * d2 );
16 res1+= log(d2);
17
18 *(double*)&prng_key = res1;
19
20 return prng_key;
21 }

Figure 9: Reimplementation of the custom PRNG

In the last  step (line 18),  the floating point representation is  copied bit-by-bit  into the integer data type. 
Theresult is the new state and return value of the PRNG. Although we are not sure if it was intended by 
Conficker's developers, this last step is some kind of protection for the PRNG and thus for the domain name 
generation. Because of this copy operation, every bit of the floating point representation is required to be 
identical  for  all  PRNGs  using  this  algorithm.  If  bits  change,  the  PRNG  looses  sync  to  Conficker's 
implementation.  While  cross-compiling  the  algorithm  using  the  MinGW Windows  cross-compiler,  we 
discovered that the cross-compiled version drifts out of sync after a few hundred operations because the 
log() function used by MinGW differs  slightly from the implementation in  the  msvcrt.dll used by 
Conficker. The digit at position 10-13 differed because of different roundings. This resulted in a single bit that 
was different and brings the PRNG and therefore the domain generation out of sync.

L"#+(%=$+:5'#OBC+:B$>&>

Conficker variants .B and .C contain blacklists of IP address ranges to prevent them from attacking and 
contacting  hosts  related  to  antivirus  vendors  (AV),  some  security  companies,  and  Microsoft.  We  have 
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published the blacklists for .B and .C on our webpage [9]. The blacklist consists of network ranges with a 
start address and end address of each network. Conficker.A does not only contain blacklists, it also checks 
for reserved RFC 1918 [11] and special IP addresses, like multicast addresses. The introduction of blacklists in 
.B can therefore be seen as an improvement for avoiding detection from AVs and Microsoft, and evidence of 
the worm's author's  continuing response to developments in the whitehat community. As the corporate 
systems typically owned by this type of organization are more likely to be fully patched against the MS08-067 
exploit, this behavior may also increase spreading performance by avoiding low return netblocks. We have 
tried to resolve the owners of the networks contained in the blacklists. The results can be downloaded from 
[9]. The networks of variant B can completely be resolved using regular whois queries. They resolve to AVs, 
security companies, and Microsoft. AVs include

! Kaspersky
! Trend Micro
! Symantec
! McAfee
! F-Secure
! Avira
! Bitdefender

Different Microsoft companies include

! Microsoft Corp.
! Microsoft Education
! Microsoft License
! Microsoft Visual Studios

The networks included in Conficker.C's blacklist do not completely resolve by whois queries.  BGP  routing 
information  does  not  provide  much  useful  information  about  the  owner  of  those  networks,  although 
Maxmind's [12] IP to organization lookup does provide useful  information. All network ranges we have 
looked up using Maxmind's public service resolved to either AVs or Microsoft. A possible conclusion from 
this observation is that the Conficker authors may have used Maxmind's IP address to organization database to 
create the blacklist from this "insider's" information, while the blacklist in .B has been created based on whois 
information.

M"#D5D('6#)$>$%=5+&$(%

Conficker versions have introduced more and more security checks to avoid removal. One is the detection of 
removal tools. In order to apply disinfection or vaccination tools, Conficker has to be terminated first, which 
is hard without being able to apply a removal tool. We have developed a tool that successfully terminates all 
running Conficker instances by wiping it from memory. It can be freely downloaded from [9].

Conficker makes use of multiple layers of packing, that differ from sample to sample. When Conficker is 
running, its code and data is fully unpacked in memory. This fact can be exploited to identify and terminate 
Conficker while keeping the system running. Our tool scans the memory allocated to all running processes, 
checks if they host Conficker, and terminates all Conficker threads while the regular part of the process 
continues to run. The general procedure is depicted in figure 10. The tool opens each running process, reads 
the memory of the process and performs a string search for the patterns of Conficker.A, .B, and .C. The tool 
and source code is freely available for download from [9].

A few people have reported slight variations in the code of different Conficker versions, such as the so called 
Conficker.B++. Therefore  binary code representation alone does not seems ideal for creating signatures – at 
least not in our case, in which we only had access to a small number of samples and therefore couldn't 
guarantee finding a unique code signature. However, one pattern that has to exist in all variants is the RSA 
key that is used to check the update signatures. Without a unique key, different Conficker samples cannot 
verify the signature of the same update. Thus, they have to be unique. Furthermore, the RSA keys provide 
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long signatures of 128 bytes (1024 bit RSA) for Conficker.A and 512 bytes (4096 bit  RSA) for Conficker.B 
and .C. As the keys have high entropy, there is a high probability that these patterns will not be found in 
another process. Table 4 in appendix A shows how the RSA keys are stored in memory. Note that before they 
are used for decryption, the byte order is reversed.

Figure 10: Disinfection process

A major barrier to easy termination is that Conficker runs inside another process. In most cases, this is a 
system  process,  such  as  svchost.exe.  These  processes  cannot  simply  be  terminated  as  this  would 
obviously lead to system instability. To find a signature it is therefore necessary to terminate the Conficker 
threads without affecting other running threads. During startup, the Conficker code and data are copied into 
a single heap segment that resides inside the running process' memory. A new thread is started in this heap 
segment and the DLL is unloaded again, because DLLMain() returns an error. In case the signature is found 
in the memory of a running process, the size of the memory segment is determined and overwritten by a 
large number of NOP instructions (NOP sled) that end in a shellcode that calls ExitThread(). This way, all 
running Conficker threads terminate themselves and the malicious code will be wiped from memory. This 
includes  Conficker's  regular  code,  the  MS08-067  exploit  filter  and  each  thread  calling 
NetpwPathCanonicalize(), which is terminated too. This ensures that re-exploitation over the network 
cannot re-occur, even using the  modified exploit method we described above. An adjustment of the NOP sled 
to pass around the filter is possible and would keep the network service running, for both friends and foes.

When Conficker is wiped from running memory, the mutexes it created (c.f. section 10) remain active inside 
the  process  and  prevent  a  re-infection.  It  must  be  noted  that  this  disinfection  is  only  temporary  and 
Conficker is reloaded after reboot. Other means, like our "Nonficker Vaxination tool" presented in section 10 or 
any other "trusted" Conficker removal tool, should therefore be applied to the system. The full disinfection 
tool and source code can be freely downloaded from [9]. Example output is shown below:

Examining [4] System: no match
Examining [380] smss.exe: no match
Examining [644] csrss.exe: no match
Examining [668] winlogon.exe: no match
Examining [712] services.exe: no match
Examining [724] lsass.exe: no match
Examining [868] svchost.exe: no match
Examining [948] svchost.exe: no match
Examining [984] svchost.exe: no match
Examining [1036] svchost.exe: no match
Examining [1092] svchost.exe: no match
Examining [1912] svchost.exe: MATCH at offset 00A152E0 of block 00A00000
Pattern for Conficker.A found
Injecting shellcode
Examining [1344] spoolsv.exe: no match
Examining [1824] alg.exe: no match
Examining [524] wuauclt.exe: no match
Examining [188] notepad.exe: no match
Examining [416] svchost.exe: no match
Examining [628] calc.exe: no match
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Several  organizations  reported  that  computers  which  have  been  cleaned  of  Conficker  infections  were 
immediately re-infected on restart. There are several possibilities for the cause of this behavior. One is that 
Conficker's autostart ability and on-disk binaries were not correctly removed. Another is that the computers 
were immediately reinfected by other compromised computers via the (local) network. We have developed a 
tool that exploits the use of mutexes by Conficker to prevent such re-infection and it can also be used to 
identify a local infection. This can be considered a vaccination because it can be installed as a preventive 
feature  as  well  as  used  after  cleanup to prevent  future  re-infection.  The tools  for  identification of  local 
infections as well as for vaccination can be freely downloaded from [9]. Conficker creates different mutexes 
to ensure that only one instance of the latest version can run at any time. When these mutexes are already 
registered,  Conficker  terminates  without  performing  malicious  actions.  We  extracted  the  mutex  name 
generation routines from Conficker.A, .B, and .C samples, re-implemented them in C and created a tool [9] 
that registers these mutexes. In the event that a Conficker variant is subsequently run while the tool is active, 
Conficker will terminate, effectively vaccinating the computer from Conficker infection.

!N"!"#D*&5A#E5%5'C&$(%

The  different  Conficker  variants  register  and  use  different  mutexes.  Conficker.A  computes  a  CRC32 
checksum of a buffer containing the host name. We were able to match the CRC32 implementation inside 
Conficker.A to that of the OpenSSL library [7], based on constant structures used, function argument counter 
and type as well as dependencies among the functions. The full mutex is created by integrating the CRC32 
checksum into the string "Global\[CRC32 - checksum]-7". The "Global" prefix is used to create a system-wide 
mutex. A full examples for an A mutex is Global\2900278491-7.

Figure 11: Local mutex generation process

Conficker.B uses two mutexes. The first mutex is local for the running process and checks if a local Conficker 
thread is active. If so, Conficker immediately exits. The second mutex is a global mutex that is used to check 
if another Conficker instance is running on the same machine. This is necessary as Conficker.B can also be 
run from other host executables, like e.g.,  rundll32.exe. The local mutex is based on the process ID. As 
depicted in figure 11, Conficker seeds the msvcrt PRNG with it's process ID. Based on this seed, a random 
length of 10-16 characters is chosen and that amount of lower-case characters from the range a-z is generated. 
The global mutex is similar to the one created in Conficker.A. It is created from the host name and uses the 
format "Global\[CRC32 - checksum]-7", too. The only difference is that a different checksum computation is 
used. Code excerpt 16 compares our C re-implementation to a code fragment found at [13].

As this mutex is related to CRC32, as well, we assume that Conficker's authors were looking for a more 
lightweight  implementation  than  that  of  OpenSSL.  If  both  CRC32  implementations  were  correct,  the 
Conficker.A and .B mutexes would conflict and not run simultaneously. But as the new checksum calculation 
fails to build the correct CRC32 checksum, Conficker.A and .B can run at the same machine at the same time, 
which  was  presumably  not  the  authors'  intention.  We suspect  that  the  developers  didn't  check  if  both 
algorithms produced the same checksum. If this second mutex is already present Conficker marks the DLL it 
was started from for deletion upon the next reboot using the API function MoveFileEx(fname, NULL, 
MOVEFILE_DELAY_UNTIL_REBOOT).
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Conficker.C is generating three different mutexes, a local one and two global ones. The local mutex is used to 
check if Conficker.C is already present in the current process. The first global mutex is used to prevent a 
backwards infection with Conficker.B. It is not checked if it is already present. The third mutex is used to 
verify that no other processes are already running version .C. Conficker terminates and deletes itself if this 
mutex  is  already  present.  The  generation  of  Conficker.C's  local  mutex  is  nearly  identical  to  that  of 
Conficker.B  except  that  the  process  ID  is  XOR-ed with  0x630063.  The  first  global  mutex  is  generated 
identically to Conficker.B and therefore a CRC32 variant of the host name. The second global mutex uses the 
same CRC32 variant of the host name but appends 0x63 in decimal (99) instead of the 7. An example for a 
Conficker.C mutex is "Global\1394688804 - 99". It may just be a coincidence, but 0x63 (99) is the ASCII code 
for "c". The same value is contained twice in the XOR key described above.

void CRC32Init()                             int simplified_crc(unsigned char* name, int name_len) {
{                                                DWORD result = 0xFFFFFFFF;
    for(DWORD x = 255; x > 0; x--)               register int i, s;
    {
                                                 for(i = 0; i < name_len; ++i) {
        DWORD z = x;                                 DWORD c = name[i];
        for(DWORD y = 8; y > 0; y--)                 for(s = 8; s > 0; s--)
        {                                            {
            if(z & 1)                                    if((c ^ result) & 1)
                z = (z >> 1)                                 result = (result >> 1)
                    ^ CRC_POLYNOMIAL;                            ^ 0x0EDB88320;
            else                                         else
                z >>= 1;                                     result >>= 1;
        }
        dwCRCTable[x] = z;                               c >>= 1;
    }                                                }
    bTable = TRUE;                               }
    return;                                      return result;
}                                            }

(a)  CRC32 implementation from [13] (b) Our assembly-based C re-implementation

Figure 12: CRC32 Implementation from [13] (left) and from Conficker.B and .C (right)

!N"2"#*>$%E#%(%=$+:5'

The described mutexes can be used to check if a system is infected with Conficker, as well as for registering 
those Mutexes to prevent (re-)infections. Microsoft describes the situation as: "If you are using a named mutex  
to limit your application to a single instance, a malicious user can create this mutex before you do and prevent your 
application from starting" [14]. We have developed a small tool that scans the system for the existence of those 
mutexes and warns the user. The tool tries to create the local B and C mutexes for each process ID found on 
the system. This reveals Conficker mutexes if the mutex was created non-locally inside a process. In the case 
where such a mutex exists, the process name will be displayed. In addition, the global mutexes are checked 
for existence as an indication of a possible Conficker infection. The tool is freely available at [9] and example 
output is:

----------------------------------
Checking for Conficker.A...WARNING: Found a possible infection
Checking for Conficker.B...clean
Checking for Conficker.C...clean
Your system is infected!
Please install the Vaxination tool and restart your computer.

Besides just scanning for infections, these mutexes can also be used to prevent Conficker from running. This 
works like a vaccination. The system checks for the presence of these particular mutexes and therefore other 
services that need them cannot run. For a permanent resistance against Conficker variants .A, .B, and .C, we 
have developed a DLL (Nonficker.dll) that can be loaded by any process. If this DLL is loaded before 
Conficker is executed by Windows' svchost, such as when the MS08-067 vulnerability is exploited, Conficker 
will terminate immediately, without performing any actions. To achieve this, the DLL must be registered as a 
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system service. This allows us to vaccinate a system with Nonficker from system startup. We have developed 
a setup program that installs the Nonficker.dll as an svchost service. The use of Nonficker is especially 
useful in situations where people have reported that systems were re-infected after a reboot. Nonficker and 
its source code can be freely downloaded from [9].
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Many organizations have claimed that Conficker infections cannot easily be identified, because Conficker 
uses random file names. While this is true for Conficker.A, it is not the case for the .B and .C. variants. It is 
true that the function rand() is used to create the names, but a seed is calculated that is based on the host 
name  of  the  infected  computer.  Therefore  a  deterministic  name  is  generated.  Conficker.B  and  .C  copy 
themselves to Windows' system directory to a DLL with the deterministically computed name. Conficker.C 
uses this calculation to remove Conficker.B infections from an infected system before installing itself.

We have developed a small tool that calculates the DLL name and possible installed autorun registry entries. 
It  can  be  freely  downloaded from [9].  After  being run on the  infected system,  the  tool  can be  used to 
manually remove the Conficker DLL. Unfortunately this isn't straightforward because Conficker attempts to 
hide itself. Files are protected by hiding them and setting the attributes to those of system files. Furthermore, 
special rights are given to those files to further restrict access to them. The Conficker DLLs are normally not 
visible within Windows Explorer or other tools. However, custom applications can be used to prove their 
existence, as shown in the following example:

C:\Python25>python.exe
>>> f=file("c:/windows/system32/syyisl.dll","r")

IOError: [Errno 13] Permission denied: 'c:/windows/system32/syyisl.dll'

C:\Python25>dir c:\windows\system32\syyisl.dll
 Directory of c:\windows\system32

File Not Found

C:\Python25>dir /ah c:\windows\system32\syyisl.dll
 Directory of C:\WINDOWS\system32

08/04/2004  01:00 PM           171,376 syyisl.dll
               1 File(s)        171,376 bytes

The algorithm for generating the installation file names of Conficker.B and .C is depicted in figure 13. It is a 
combination of existing functions used in the global mutex generation and the domain name generation. In a 
first step the current host name is determined and checksummed using the variant CRC32 algorithm shown 
in code excerpt 12. While for the mutexes, this number was used right away, here it is XOR-ed with a variant 
specific 32-bit value. The XOR values specific for the Conficker variant file name generation are:

! Conficker.B : 0x045419005
! Conficker.C : 0x0C7BD45E1

The  resulting  value  is  used  to  initialize  the  random  number  generator  of  the  imported  msvcrt.dll 
(srand()). As this seed depends only on the host name, it can even be computed remotely, assuming the 
host name is known. The rest of the calculation is similar to the domain name generation, except that the 
msvcrt PRNG (rand()) is used. At first the length of the file name is chosen with a length of 5-8 characters. 
In the last  step, this number of lower case characters is generated and the suffix ".dll" appended. The 
Conficker DLL is then copied to this filename into the system folder.

It is to be noted that Conficker.B and .C use a similar name generation for the registry values. To the time of 
writing this paper, we have only extracted those keys, but want to combine all information into one single 
removal tool. Please visit the tool download site [9] for subsequent updates.
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Figure 13: File name generation process for variants .B and .C
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We have pre-computed Conficker.C domains for the updates starting on 1st April 2009. Due to the shorter 
names (4-9 characters), there are about 150 - 200 collisions with existing domains per day, as can be seen in 
figure 14 a. A list of colliding domains for April can be downloaded from [9]. The many conflicts created by 
Conficker.C help to hide real update domains, but there are a range of IP addresses that occur regularly, as 
can be seen in figure 14 b.

We  have  already  observed  a  registrant  for  all  unassigned  .to,  .as,  .cl,  and  .com.mx domains  that 
sinkholes requests to those domains. In addition, there is another sinkhole that has already been used in 
Conficker.B monitoring. The IP addresses of those sinkholed domains are not included in the presented 
results. There are still 18 IP addresses that create collisions with more than 24 domains for April 2009. Six 
domains collide with more than 100 domains and one with more than 200 domains. The full list of collisions 
can be downloaded from our webpage at [9].

       (a) Number of collisions per day (b) Number of conflicts per IP address

Figure 14: Collisions with Conficker.C domains for April 2009
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This section is not about profiling. We won't discuss questions such as "How many authors are involved in 
Conficker development?", "What is their location?" or ”What is their motivation?". While these questions are 
definitely interesting to discuss, it is beyond the scope of this technical paper. However, we can try to draw a 
picture from the facts presented in this paper and learn something about the people potentially behind 
Conficker. Most notably, the malware seems to have been developed in a rather professional manner. By this, 
we don't refer to the different revisions, which is quite common even for less sophisticated malware. In fact, 
we think it is difficult to write a program with functionality comparable to Conficker's without software 
design experience and a clear development concept. There must be at least some organized approach behind 
this worm, and we would not be surprised to find indications that the source code was organized in a 
revision control system. The use of mutexes ensures that only the newest version is running (c.f. section 10). 
Also, the coding style seems to be quite good, as far as you can tell from inspection of the assembly code. 
Return values are checked in most cases, error handling is performed, and functions are held generically to 
suit  multiple tasks.  Speculating on the programming language is  difficult,  however, there are not much 
indications for object orientation, so we assume Conficker was written in an imperative language.

To try and avoid speculation and only look at the facts available, it seems that whoever wrote Conficker is a 
capable software developer. Many security experts wonder why strong cryptography is either absent in most 
malware families  or  at  least  implemented incorrectly,  often rendering it  completely useless.  It  is  widely 
known that adoption of strong encryption and even more importantly strong signatures can substantially 
raise  the  bar  against  defeating  malware.  Conficker's  design  does  not  appear  to  particularly  care  about 
privacy, which makes sense as analysts have complete control over a sample and can eventually snoop on its 
communication  anyway.  Instead,  it  relies  on  making  use  of  signed  updates,  using  a  combination  of 
sufficiently secure hashing and a private/public encryption scheme, namely RSA, with a key size that is 
considered secure. The length of the key was even increased from 1024 bits in Conficker.A to 4096 bits in later 
versions, showing that, even though the .A key would already be very hard to break, the keys were changed 
just to be on the safe side. 

Besides  correctly  using  strong  cryptography,  the  authors  have  also  been  smart  enough  to  avoid 
implementing the functions themselves (which is a common cause of failure in poorly written malware). 
Instead, they borrowed code from OpenSSL [7], which is an open source project and considered high quality 
and well tested. The pseudo random number generator used for domain generation appears to be a non-
standard system, suggesting higher levels of software development experience. The author(s) also reuse a 
niche implementation of CRC32 [13] in their mutex name generation algorithm, a slightly modified variant of 
the original scheme. Such minor variations make it much harder to re-implement a routine. Furthermore, 
recent variants at least make intensive use of indirect calls and jumps and pick functions to pieces which 
significantly complicates analysis. The developers apparently knew their code would be reverse-engineered 
and prepared it in this way to make the analysts' job harder, which suggests an awareness of whitehat R&D. 
The author(s) also seem to know exactly which algorithm to use for which purpose. This requires staying 
current with the latest  state-of-the-art  in these technologies,  which is another indication of their level of 
experience and professionalism.

Although  this  may  appear  to  be  praising  malcode  developers,  their  use  of  the  hooking  approach  is 
technically very impressive. Conficker implements a generic routine that calculates the size required for 
arbitrary  hooks  (a  JMP instruction in  most  cases),  identifies  all  instructions that  are  modified using  an 
integrated length disassembler, copies these instructions to a backup location and appends a jump back to 
the first unmodified instruction in the original code. This is a smart solution and definitely suggests strong 
domain knowledge,  since  there are very few legitimate use  cases  for  this kind of approach in "normal" 
development.

Since version .B, Conficker has included virtual machine detection capabilities. It evaluates the result of the 
SLDT instruction to determine whether it runs in a virtual environment. While  SLDT is very common in 
viruses,  we have never seen it  in  shellcode before – Conficker.B's  exploitation attempts contain it  as well. 
Given this, it is all the more remarkable that the instruction's return value is not evaluated in the shellcode. 
So why was it included? Maybe checking the result was simply forgotten. Another possible answer is that 
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SLDT was used for libemu evasion, as discussed in section 1.2. This would be the first time we are aware of 
that exploit shellcode tries to evade this tool, indicating once again that the developers are up to date with 
current attack and malware analysis techniques. The authors also seem to track the news on Conficker and 
find  solutions  to  evade  countermeasures.  One  example  of  this  progression  is  the  much  larger  list  of 
generated domains in Conficker.C, significantly increasing the cost and logistical effort required for system 
defenders to pre-register domain names (and only using a small fraction of those registered domains) . It is 
also interesting that they use query technologies like Maxmind's database and whois to find and evade their 
opponents' netblocks, and that they have been able to consistently automate mass registration of so many 
domain names.

Other technical features, such as the doubly-packed binaries, the thread injection capabilities and the fact 
that  a  memory image of Conficker  does neither  contain a valid PE header nor import table (to hamper 
dumping) are not that uncommon in modern malware, but still demonstrate that this piece of malware is 
state-of-the-art. Given that much of the malicious activity on the Internet today is aimed at financial gain, it 
at least seems likely that Conficker could have long term criminal goals.
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In  this  paper,  we have presented different  ways to detect,  contain and remove Conficker.  The  methods 
include local and remote detection, vaccination, as well as different approaches for identification, removal 
and prevention of local infections. 

All Conficker variants try to patch the infected systems to prevent re-exploitation. The handler, installed as a 
function hook, changes the behavior of RPC requests on infected machines. This information can be used to 
remotely scan for Conficker infections.  In addition to actively scanning, machines infected with Conficker.A 
and .B can be identified using the presented IDS signatures.  Another option to remotely detect infected 
machines are the domain names generated by the different variants By registering and sinkholing requests, 
infected machines can passively be enumerated. The domain name generation algorithm has been explained 
in detail including its custom PRNG. The domains cannot be registered for all  IP addresses.  Conficker.B 
and .C use blacklists to avoid AV and security companies and Microsoft networks, as discussed in Section 87. 
We have presented an approach that can terminate and wipe Conficker from memory while keeping the 
infected system services running. In addition, we have shown the file name generation algorithm that we 
extracted from Conficker.  This information can be used to remove the infections. In order to prevent re-
infection, as seen by several organizations, we have presented the Nonficker Vaxination tool,  which prevents 
infections by using the mutex generation algorithm found inside Conficker. The final section of this paper 
allegorized a view of the Conficker authors' technical profile.

The original paper included a detailed explanation about issues in Conficker, which allow exploitation. The 
Conficker Working Group (CWG) has requested to not include this section in this public version for various 
reasons. The full paper will be published in the near future.

All descriptions include detailed information about the algorithms used. We have developed tools based on 
the extracted algorithms. The tools are released under the GPL and can be freely downloaded, together with 
their source code, from http://iv.cs.uni-bonn.de/conficker [9] .
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Conficker.A Conficker.B Conficker.C
CF F0 7B 61 89 D7 16 E8 1B 09 ED 31 45 FE 
2E E7 8A 24 B9 56 F6 73 41 36 78 EF 37 50 
DF EC 86 CA 4F E2 96 4B C3 E6 F4 50 BA 16 
56 E8 4E 76 F2 5B 72 45 57 98 7A 07 0B 97 
15 17 E9 AB F6 6D 13 56 DE 66 1A 55 AE AE 
9E 94 53 EE 60 25 34 FC 01 CB F7 66 1D F4 
B0 E9 1D 6F E9 A9 1B 82 C1 A3 5C 6E E3 DA 
61 65 28 AB 36 6A A5 3E E9 EE 0A C1 3A E2 
27 43 F6 1E 0B 03 2A 3C 9B 91 FE E9 40 76 
BF 25

E7 A7 2D F5 45 CA 12 49 E6 44 1E D6 72 4C 
1B BA 3C 72 F0 8B 4B EB 75 F3 5E E8 44 CD 
87 56 E9 21 E6 06 34 33 76 49 93 42 EC E8 
03 36 19 A6 AD 4D 12 59 7F 96 01 85 41 25 
CB E2 83 7E 72 DF 85 B3 DD E1 59 FB 97 78 
9A 2D B2 B6 3D E9 58 52 45 39 1B 90 C8 9F 
D7 5C 2B 42 DE A6 6A D8 03 D0 F2 4C AF 72 
24 2E 9D 8C F3 4D 2F 2F 4D F2 49 D6 89 29 
A2 C9 C6 FF F2 5F 98 B6 68 09 AD 92 10 70 
D5 10 EA 1C DA B6 BC D4 03 CC 8D 9E 8E 57 
8C CF FC BC 5B C3 9E 31 5B DA 08 8A 93 26 
80 BF D2 DB 45 80 83 33 87 AF 69 C2 F6 5F 
15 99 34 14 CB 0F 88 CC 44 29 E9 93 45 9E 
7E F9 12 87 8A 93 8E 33 43 BB 0C 40 5B 60 
4C 86 40 31 17 99 65 13 E4 6C C2 8A E5 A4 
30 D9 F3 D6 6A BB EB DF DA 02 EC 6D 38 7E 
23 EE 11 68 8A 62 7D A8 93 93 9E C6 DC 7B 
F1 23 5D 66 72 39 C8 3D E5 56 C3 20 D9 A8 
9A 25 35 E4 3B 99 D4 7E 61 D1 D7 74 50 E3 
6A EB 49 5A 31 3D 21 DE 29 4A CD 30 FC D1 
FD D7 98 73 60 4B A6 53 08 5D F9 EE 05 E6 
21 97 ED D9 B7 D6 BC 00 34 B1 76 6B BD 26 
60 8A 2C 1C B6 E6 58 2D 47 4D 40 09 5B 83 
B1 9D 3C 98 8E A2 2D 9E 5D 7A 07 F1 0D C8 
1B 26 47 B0 1A 1C 70 08 76 4C C2 9C CF 3A 
F3 0E 1E C6 00 A8 15 CB 47 92 7E 1D F9 07 
42 AA 92 49 DC 04 71 ED D6 E7 DC E6 AD 3C 
BD 25 18 32 FA EC FA B7 A5 FB CC A1 49 52 
BA 30 60 A7 D3 B0 A3 95 E5 F2 DA 61 BD 27 
D2 97 C0 D8 66 33 37 04 13 D2 36 9D 3F CB 
24 79 6B 2E 69 22 E1 0B AD C1 5B 48 8A E1 
D5 00 87 37 44 06 F5 AE 4C 74 4B 20 0F A3 
57 63 08 D4 57 EB F0 3A E3 1A 03 C4 DF 9A 
17 2D 7F FD 1F 44 71 DA 49 B7 BA 3F 26 B5 
DD 9C FE CA 18 70 DB EC 99 63 84 96 30 10 
80 4C 33 73 4D BC B2 C3 79 2C 83 68 CD 41 
5C 45 ED 7D E7 BE A8 88

13 E5 A4 19 AD 58 46 33 10 1E FE C1 A1 96 
4F B1 18 FB E1 49 20 32 9C 17 E8 1C 7C BC 
6D 81 31 C9 DB 8D 7D BC A1 BB 94 E4 21 04 
7D 30 AA F9 67 8C 78 A6 41 47 CA 08 57 B9 
52 00 A9 2B E0 78 D7 FC 5A 57 FB 7C D9 D0 
16 E2 2E 2C DE F6 DB 84 94 43 E7 EE 72 1C 
86 7E 81 95 59 CE 39 BB A2 20 A0 81 63 03 
09 3D 9C EF 5F EE 03 8B D9 56 21 A8 C4 FA 
B5 B1 69 20 74 30 B5 1C EA 83 04 78 50 78 
AC 1C 8C 54 5D 2B E3 92 75 BD D9 78 5E EB 
21 43 9B A6 16 89 D4 6B 0B 0F 0D 6A 15 47 
F8 19 50 41 62 2C 9E D8 9A 56 3B 41 7A C4 
5A 44 AF FB D6 7D F9 1C C0 46 A3 F5 81 49 
BA D6 E1 06 A8 93 F6 E7 87 83 62 E8 C0 BC 
2D 18 7A 69 1E 1A F5 19 5A B9 CE 7A 34 DC 
A0 3A 2E EE 6B 12 B2 F0 2D 2E 87 6D 5F 2D 
F5 97 BC F0 53 1A 30 C5 6D C5 A4 A2 28 BE 
88 AD E1 79 06 6E 3C 90 F3 36 F9 2F F8 05 
3B 5B EA C3 D3 01 E5 67 6C 4C 28 7E 35 B3 
CD 6E 33 D3 D3 20 2E 09 CF 30 79 4A 41 03 
62 76 1D 92 B2 A4 34 88 09 44 14 55 14 E8 
EF F0 FC CB 82 E0 04 50 42 36 DC 3D B8 92 
E9 AB 13 5A 7B 0E 07 A4 EB 71 69 1C 03 A9 
0E 5E 29 43 57 D4 A8 E0 71 BD 47 6E 73 CC 
82 0B 63 81 89 6F AC 5E 59 16 3F E2 D2 DC 
A4 BD F7 77 EA 0A F3 CC 6F 4D 51 DB 7C 94 
7D 57 5E 1B A6 A2 18 E1 C5 B6 E2 20 8E 6C 
11 4F C9 1E F6 56 93 8F 56 62 A0 11 86 1F 
1D 1D 2D D7 2A E1 30 31 30 1C A8 BF 28 0D 
0E 90 DA 2D 54 B7 8C 03 44 00 7D 5B AB C2 
5F 51 34 E0 A5 BF 2D ED C3 28 D4 BB 59 B5 
F2 5E FD 5A 5B 9A E9 39 62 B4 99 4E 35 09 
E2 A2 B1 81 2B 2F 4B DB 3E 76 62 22 52 FD 
79 5B 6E 53 70 3C BE 9E 4D AB 54 D3 9E 62 
FF 59 7A 60 FC 78 48 1E 05 2F CB 1C F9 5F 
23 91 FE 7E 42 E2 88 B0 D3 33 87 41 00 72 
4F 94 63 22 67 B9 A2 20

Table 4: RSA Keys as stored in Conficker
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